Efeitos do exercício sobre regulação telomeral no envelhecimento: revisão sistemática
DOI:
10.24281/rremecs2024.9.15.126137Palavras-chave:
Envelhecimento, Telômero, ExercícioResumo
A nível celular, a biologia do telômero é o regulador central do processo de envelhecimento. Nesta revisão, vamos integrar evidências científicas a partir de estudos em humanos para compreender o efeito do exercício resistido e aeróbico sobre a regulação da biologia telomeral e discutir os possíveis mecanismos que o exercício ativa ao atenuar o encurtamento dos telômeros no processo do envelhecimento. A demonstração será feita por diagrama de fluxo da literatura pesquisada. Foram encontrados 4.380 artigos e foram avaliados 60 artigos previamente selecionados por meio da leitura dos resumos deles. Desses, 10 foram considerados elegíveis para uma análise dos dados. O treinamento físico aeróbico contínuo de intensidade moderada ou alta, durante pelo menos 5 anos, aumenta o comprimento dos telômeros, enquanto o treino resistido ondulatório de 12 semanas de moderada intensidade progredindo para alta mostrou-se eficiente no aumento da atividade da telomerase na mesma população.
Descritores: Envelhecimento, Telômero, Exercício.
Effects of exercise on telomere regulation in aging: a systematic review
Abstract: At the cellular level, telomere biology serves as the central regulator of the aging process. In this comprehensive review, we aim to integrate scientific evidence from human studies to comprehend the effects of resistance and aerobic exercise on telomere biology regulation and discuss the potential mechanisms activated by exercise in attenuating telomere shortening during aging. This demonstration will be conducted through a flowchart of the reviewed literature. A total of 4,380 articles were found, and 60 previously selected articles were thoroughly evaluated through abstract reviews. Out of these, 10 were deemed eligible for data analysis. Continuous moderate to high-intensity aerobic physical training, for at least 5 years, increases telomere length, while undulating resistance training, over 12 weeks starting from moderate intensity progressing to high, has shown efficiency in enhancing telomerase activity within the same population.
Descriptors: Aging, Telomere, Exercise.
Efectos del ejercicio sobre la regulación telomeral en el envejecimiento: revisión sistemática
Resumen: A nivel celular, la biología del telómero es el regulador central del proceso de envejecimiento. En esta revisión, integraremos evidencia científica de estudios en humanos para comprender el efecto del ejercicio resistido y aeróbico en la regulación de la biología telomérica. La demostración se realizará mediante un diagrama de flujo de la literatura investigada. Se encontraron 4.380 artículos y se evaluaron 60 artículos previamente seleccionados a través de la lectura de sus resúmenes. De estos, 10 fueron considerados elegibles para un análisis de datos. El entrenamiento físico aeróbico continuo de intensidad moderada o alta, durante al menos 5 años, aumenta la longitud de los telómeros, mientras que el entrenamiento resistido ondulante de 12 semanas de intensidad moderada progresando a alta se mostró eficaz en el aumento de la actividad de la telomerasa en la misma población.
Descriptores: Envejecimiento, Telómero, Ejercicio.
Referências
Ludlow AT, Roth SM. Physical Activity and Telomere Biology: Exploring the Link with Aging-Related Disease Prevention. Journal of Aging Research. 2011; 2011:1-12.
Pinto AR. Telomere protein complexes and interactions with telomerase in telomere maintenance. Frontiers in Bioscience. 2011; 16(1):187.
Smogorzewska A, van Steensel B, Bianchi A, Oelmann S, Schaefer MR, Schnapp G, et al. Control of Human Telomere Length by TRF1 and TRF2. Molecular and Cellular Biology. 2000; 20(5):1659-68.
Zhu H, Belcher M, van der Harst P. Healthy aging and disease: role for telomere biology? Clinical Science. 2011; 120(10):427-40.
Brouilette S, Singh RK, Thompson JR, Goodall AH, Samani NJ. White Cell Telomere Length and Risk of Premature Myocardial Infarction. Arteriosclerosis, Thrombosis, and Vascular Biology. 2003; 23(5):842-6.
Demissie S, Levy D, Benjamin EJ, Cupples LA, Gardner JP, Herbert A, et al. Insulin resistance, oxidative stress, hypertension, and leukocyte telomere length in men from the Framingham Heart Study. Aging Cell. 2006; 5(4):325-30.
Kurz DJ. Chronic oxidative stress compromises telomere integrity and accelerates the onset of senescence in human endothelial cells. Journal of Cell Science. 2004; 117(11):2417-26.
Bekaert S, De Meyer T, Rietzschel ER, De Buyzere ML, De Bacquer D, Langlois M, et al. Telomere length and cardiovascular risk factors in a middle-aged population free of overt cardiovascular disease. Aging Cell. 2007; 6(5):639-47.
Hooshmand-Moghadam B, Eskandari M, Golestani F, Rezae S, Mahmoudi N, Gaeini AA. The effect of 12-week resistance exercise training on serum levels of cellular aging process parameters in elderly men. Experimental Gerontology. 2020; 141:111090.
Tosevska A, Franzke B, Hofmann M, Vierheilig I, Schober-Halper B, Oesen S, et al. Circulating cell-free DNA, telomere length and bilirubin in the Vienna Active Ageing Study: exploratory analysis of a randomized, controlled trial. Scientific Reports. 2016; 6(1).
Saßenroth D, Meyer A, Salewsky B, Kroh M, Norman K, Steinhagen-Thiessen E, et al. Sports and Exercise at Different Ages and Leukocyte Telomere Length in Later Life – Data from the Berlin Aging Study II (BASE-II). Saretzki G, editor. PLOS ONE. 2015; 10(12):e0142131.
LaRocca TJ, Seals DR, Pierce GL. Leukocyte telomere length is preserved with aging in endurance exercise-trained adults and related to maximal aerobic capacity. Mechanisms of Ageing and Development. 2010; 131(2):165-7.
Silva LCR, de Araújo AL, Fernandes JR, Matias MST, Silva PR, Duarte AJS, et al. Moderate and intense exercise lifestyles attenuate the effects of aging on telomere length and the survival and composition of T cell subpopulations. AGE. 2016; 38(1).
Stenbäck V, Mutt SJ, Leppäluoto J, Gagnon DD, Mäkelä KA, Jokelainen J, et al. Association of Physical Activity With Telomere Length Among Elderly Adults - The Oulu Cohort 1945. Frontiers in Physiology. 2019; 10.
Hagman M, Fristrup B, Michelin R, Krustrup P, Asghar M. Football and team handball training postpone cellular aging in women. Scientific Reports. 2021; 11(1).
Shadyab AH, LaMonte MJ, Kooperberg C, Reiner AP, Carty CL, Manini TM, et al. Association of Accelerometer-Measured Physical Activity With Leukocyte Telomere Length Among Older Women. The Journals of Gerontology: Series A. 2017; 72(11):1532-7.
Shadyab AH, LaMonte MJ, Kooperberg C, Reiner AP, Carty CL, Manini TM, et al. Leisure-time physical activity and leukocyte telomere length among older women. Experimental Gerontology. 2017; 95:141-7.
Hiam D, Smith C, Voisin S, Denham J, Yan X, Landen S, et al. Aerobic capacity and telomere length in human skeletal muscle and leukocytes across the lifespan. Aging. 2020; 12(1):359-69.
Cherkas LF, Hunkin JL, Kato BS, Richards JB, Gardner JP, Surdulescu GL, et al. The association between physical activity in leisure time and leukocyte telomere length. Archives of Internal Medicine. 2008; 168(2):154-8.
Kasapis C, Thompson PD. The effects of physical activity on serum C-reactive protein and inflammatory markers: a systematic review. Journal of the American College of Cardiology. 2005; 45(10):1563-9.
Goldhammer E, Tanchilevitch A, Maor I, Beniamini Y, Rosenschein U, Sagiv M. Exercise training modulates cytokines activity in coronary heart disease patients. International Journal of Cardiology. 2005; 100(1):93-9.
Sima AV, Stancu CS, Simionescu M. Vascular endothelium in atherosclerosis. Cell and Tissue Research. 2008; 335(1):191-203.
Werner C, FürsterT, Widmann T, PössJ, Roggia C, Hanhoun M, et al. Physical Exercise Prevents Cellular Senescence in Circulating Leukocytes and in the Vessel Wall. Circulation. 2009; 120(24):2438-47.
Margaritis I, Tessier F, Richard M-J, Marconnet P. No Evidence of Oxidative Stress After a Triathlon Race in Highly Trained Competitors. International Journal of Sports Medicine. 1997; 18(03):186-90.
Carrard G, Bulteau A-L, Petropoulos I, Friguet B. Impairment of proteasome structure and function in aging. The International Journal of Biochemistry & Cell Biology. 2002; 34(11):1461-74.
Friguet B. Oxidized protein degradation and repair in ageing and oxidative stress. FEBS Letters. 2006; 580(12):2910-6.
Cadenas E, Davies KJA. Mitochondrial free radical generation, oxidative stress, and aging11This article is dedicated to the memory of our dear friend, colleague, and mentor Lars Ernster (1920–1998), in gratitude for all he gave to us. Free Radical Biology and Medicine. 2000; 29(3-4):222-30.
Nemoto K, Gen-no H, Masuki S, Okazaki K, Nose H. Effects of High-Intensity Interval Walking Training on Physical Fitness and Blood Pressure in Middle-Aged and Older People. Mayo Clinic Proceedings. 2007; 82(7):803-11.
Fisher G, Schwartz DD, Quindry J, Barberio MD, Foster EB, Jones KW, et al. Lymphocyte enzymatic antioxidant responses to oxidative stress following high-intensity interval exercise. Journal of Applied Physiology. 2011; 110(3):730-7.
Shin Yun-A, Lee J-H, Song W, Jun T-W. Exercise training improves the antioxidant enzyme activity with no changes of telomere length. Mechanisms of Ageing and Development. 2008; 129(5):254-60.
Publicado
- Visualizações 0
- pdf downloads: 0
Como Citar
Edição
Seção
Este trabalho está licenciado sob uma licença Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.